Radiation protection of patients in computed tomography
Summary of contributed papers

Michel Bourguignon, MD, PhD
Commissioner
The French Nuclear Safety Authority (ASN)

International conference on radiation protection in medicine
Setting the scene for the next decade - BONN 6 Dec 2012
Content

21 papers from 14 countries

- Children protection (3 papers)
- Eye lens protection (3 papers)
- Angiography, cardiac & chest CT (4 papers)
- Head CT (2 papers)
- Multidetector CT (2 papers)
- Miscellaneous (7 papers)
- Conclusion
Children are more sensitive to radiations (young tissues + longer life expectancy)

CT is a high dose technique

Children are not small adults = Specific CT protocols needed

DRLs in greater Korasan province (Barheyni Toussi - Iran)

- 7 randomly selected hospitals in 5 cities
- 4 most common CT examinations (brain, chest, abdomen, pelvis)
- Spiral protocol with head and trunk phantoms
- 3 age groups (< 5, 5-10, 10-15 yo)
- CTDI$_w$ and CTDI$_vol$
- DRL values smaller than UNSCEAR 2007 values
- Satisfactory situation = qualified and RP trained technologists
Pediatric doses in Tehran (Khosravi - Iran)

- 9 CT scans in 7 Tehran hospitals
- Standard head PMMA phantom
- 4 age groups (<1, 1-5, 5-10, 10-15 yo)
- CTDIw and DLP
- Results in the range of international values but CT and hospital dependent
- Optimisation needed
Radiation protection of patients in computed tomography

Children protection (3 papers)

- **RP in pediatric CT in Buenos Aires (Rizzi – Argentina)**
 - Real Issue for children referred with a previous scan poorly realized
 - CT protocol designed for each child
 - 80kV reduces doses by 50% for same diagnostic quality
 - Scan delay time after contrast injection takes into account cardiac frequency = optimisation
 - Information and training of health teams on RP +++
 - Promotion of medical physics
- CT dose to eye lens increasing = risk of cataract
- ICRP threshold 0.5 Gy to avoid deterministic effects with occupational equivalent dose limit 20 mSv/year (average on 5 years, no single year > 50 mSv)

➤ Reducing dose by adjusting beam path (Schmidt – Giessen - Germany)
- ICRP adult female phantom + Monte Carlo simulations
- Dose change according to the eyes position within or close to the scan field
- Effect of back of head with adapted spiral scan path to protect eyes
- Direct eye exposure with standard head CT protocol = 35 mGy
- Doses decrease by 3 in penumbra, by 10 when eyes outside the field and by 2.4 when back of head as protection (pitch 1.5)
- No effect for pitch 1 or less
Eye and Thyroid dose from head CT (Curci Daros – Sao Paulo – Brasil)

- Standard head PMMA phantom + TLDs
- Effect of gantry angulation -10° and -20° for single slice CT / Multidetector CT
- Significant dose reduction for -20° gantry angulations
Eye dose with iterative reconstruction (Yoshimura – Sao Paulo – Brasil)

- Alderson head phantom + TLDs
- ASIR algorithm to reduce noise in acquired low dose imaging
- Comparison with Filtered back projection
- Evaluation with signal to noise ratio and contrast to noise ratio
- ASIR compensates the charge reduction from 310 to 100 mA.s
- Not as efficient with patient data
Radiation protection of patients in computed tomography

Angiography, cardiac & chest CT (4 papers)

- High doses related to increased spatial and temporal resolution
- Increase use of CT

Image quality and dose in cardiac CT (Garcia-Pinto – Madrid - Spain)

- CT coronary angiography (2CT 64 and 320 slices)
- Synchronization with patient’s ECG and selection of best reconstruction cardiac phase (prospective or retrospective gating)
- Evaluation on PMMA QRM thorax phantom simulating arteries: contrast to noise ratio, normalized area and structural similarity
- Prospective gating dose less than retrospective gating (factor 2.6)
- Complex results but useful method to analyze the influence of parameters (kV, contrast injection rate, heart rate, reconstruction filters ..) on the quality of images
Coronary CT angiography (Sun – Perth - Australia)

- Factors affecting dose: scan geometry, scan range, tube current and voltage, prospective vs retrospective gating, heart rate, slice thickness, noise and pitch
- Dose reduction from 10 mSv to 1 mSv is possible with
 - lower tube voltage from 120 kV to 100/80 kV (adapted to body mass index)
 - high pitch acquisition in 3D with dual source CT
 - prospective gating
 - Iterative reconstruction (better than filtered back projection)
Doses from CT angiography in Sudan (Elnour – Khartoum - Sudan)

- 2 CT in 2 hospitals
- DLP measurements in patients
- Evaluation by Sudan Atomic Energy Commission
- A factor 2.2 difference of mean values DLP between the 2 hospitals
- Optimisation to be achieved
Optimisation of dose in chest CT (Tamam – Khartoum - Sudan)

- Patient study
- Comparison of standard protocol vs optimized protocol: increase pitch factor, patient related parameters and exposure related parameters
- Dose reduction by a factor ≈ 3
CT Optimization in National Institute of Cancer (Kodlulovich – Rio de Janeiro – Brazil)

• Multidetector MDCT evaluation
• CATPHAN model 504
• Dose / noise level vs mAs for each pitch to establish the optimal technique
• Determination of optimal technique and quantification by a factor of optimization
• 56 % dose reduction in head CT with optimized protocols with no loss in image quality
Kernel selection in head CT optimization (Silveira – Rio de Janeiro – Brazil)

- Head CT = highest collective dose for CT
- Image quality phantom of ACR with MDCT (3 different manufacturers)
- CTDIvol and CNR evaluation for different reconstruction filters
- Decrease dose up to 40% possible for same image quality
- **Comparison of 4 slice and 64 slice CT (Srivastava – Delhi – India)**
 - DLP and estimated effective doses in 4 slice and 64 slice CT of same manufacturer
 - Manufacturer’s protocols for brain, chest and abdomen
 - Significant reduction of doses (50% on average) for brain CT with 64 slice CT/4 slice CT
 - No significant reduction of doses for chest and abdomino-pelvic studies
RP of patients with Multidetector CT (Chaturvedi – Mumbai – India)

- Helical and multislice scanning (MDCT) allows a reduction of scanning time (e.g., whole body scanning time < 1 minute)… responsible for the increase in the number of procedures and the collective dose
- More examinations in a given time, extension of scope of examination before the patient leaves the room, introduction of new techniques
- Justification, optimization, quality assurance to be reinforced and controlled by regulators
Radiation protection of patients in computed tomography

Validation of Radiology Information System (RIS) dose / DICOM data (Couch – Liverpool – UK)

- Reliability of dose data in DICOM headers for audit purposes
- High prevalence of impossible values: zero dose or extremely high doses
- Manual entry of dose data in RIS / automatic registration in DICOM
- Impossible to remove errors in RIS by statistical means
- RIS is reliable if cleansed of unfeasibly large or small values
Dose of CT survey scans (Bohrer–Giessen – Germany)

- Tool to optimize patient positioning and scan range (scout view)
- Often assumed to be negligible (< 1% of CT dose)
- Rando Alderson phantom and TLD measurements with MDCT
- Up to 28% of CT dose in optimized sinusitis CT, 2-5% for chest, abdomen, pelvis
Risk of CT exposures: organ/effective doses (Ivanov – Obninsk – Russia)

- So far consensus on the use of effective dose for estimating risk
- ICRP proposal (Brenner) for calculation of effective risk, i.e., summed organ doses weighted with actual epidemiologically-based cancer risks
- More emphasis on cancer incidence than cancer mortality
- Life time risk evaluated by effective risk can be 3 times greater than effective dose risk
Body mass index influence on CT effective dose (Niiniviita–Turku – Finland)

- Target scanning areas: Thorax, abdomen and whole body with or without contrast
- NRPB software to determine organ and effective doses
- Significant increase of doses with BMI increase, up to 3.35 mSv and 6 mGy for effective dose and absorbed dose for patients with BMI >30 kg/m² vs BMI <25 kg/m²
- Optimization needed essentially for whole body and abdomen scanning
Optimization study of CT doses in Cuba (Fernandez Herrera-Havana – Cuba)

- Evaluation in 3 CT in Havana as a preliminary study for Cuba (IAEA project RLA/9/607)
- Air kerma index \((C_{vol}) \) and length product \((P_{KL}) \) estimated for each procedure
- Analysis of results take also into account tube voltage & current, gantry rotation time, collimation and slice thickness, pitch and length, type of protocols (prerecorded or not)
- Wide variation of air kerma values = Good basis for the evaluation of 80 new CT in Cuba
Optimization study of CT doses in Ankara (Bulur - Ankara – Turkey)

- Evaluation in 5 CT in Ankara for optimization
- Head and body ACR phantoms + pencil type ionisation chambers and electrometers
- 16 row MDCT with 5 different routine protocols
- Tube current and voltage reduced until image quality was not significantly decreased
- Reduction of CTDI$_W$ by 46% by reducing tube current from 240mA to 115mA
- Main outcomes:
 - establishing DRL for Turkey
 - disseminate radiation protection culture and training
Personalized organ CT dose with Monte Carlo (Castra – Giessen – Germany)

- Evaluation of breast & lung CT dose in 21 female patients
- Contouring of organs
- Virtual CT scanner (Siemens volume zoom): 120kV, 135 mAs, collimation 10mm, 1.5 pitch
- Personal dose calculation with homemade Monte Carlo software package
- Significant decrease of organ doses with increasing breast volume
- Comparison with simulations of female ICRP voxelized phantom: good on the average, but individual variation depending on patient geometry in the range of ± 20%
- Confirm ICRP 103 recommendation of individualization of phantoms