English | Español

Patient Protection

Patient protection

Justification

Optimization and radiographic quality

Patient protection

1. Can I take measures to promote a good radiation protection practice in dentistry?

The short answer is YES. The most effective way to reduce dose in dental radiography is to avoid unnecessary X ray examinations by justification. Routine dental X ray examination for all patients is not justified In addition, the patient dose for each X ray examination should be optimized so that it is As Low As Reasonably Achievable (ALARA) and consistent with producing the required image quality. It is important that the equipment is subject to formal acceptance testing, routine quality control (Figure 5) undergoes proper maintenance, and has all the standard dose reduction features. Please refer here for details.

Figure 5 scratched CR plate, unsuitable for use

Page Top

2. Should patients and carers wear lead aprons and personal protective devices during a dental radiographic procedure?

With well designed and optimized equipment and procedures there is no need for routine use of lead aprons for the patient in dental radiology. Lead aprons may provide some protection in the case of the vertex occlusal examination, and may be prudent in the case of vertex occlusal examinations in a patient who is, or may be, pregnant. On the other hand, the use of a lead apron may reassure patients that every effort is being made to ensure their safety, and may reduce the amount of time that needs to be taken to reassure them. Certainly a lead apron should be provided for any patient who requests one. It may also be advisable to consider using them on a cautionary basis where equipment and/or technique have not been verified by a radiation protection specialist, and where they will not otherwise interfere with the examination. Thyroid collars should be used in the few examinations where the thyroid may be in the main beam.

Lead aprons should be provided for a person who is required to support a patient during the radiographic procedure (i.e., a comforter or carer). Assisting adults should be positioned so that all parts of their body are out of the main beam.

Page Top

3. What are the recommendations and safety measures for children undergoing dental radiography?

Many actions are similar to those recommended in adult procedures. Please refer to Question 8 for further details. [AAPD 2008].

Although radiation exposure arising from dental radiology is low, a child may undergo many repeated procedures during childhood and adolescence. Therefore, the accumulated effect of the radiation exposure should be taken into consideration. The salivary and the thyroid glands are among the organs at risk in dental radiology. The salivaries are often within the primary beam, while the thyroid receives dose mainly due to scattered radiation [LOOE, H.K. et al., 2006]. Since the thyroid is one of the most radiosensitive organs in children, it may be necessary to consider shielding it from time to time; useful guidance in this regard is available in [EC-RP 136].

Page Top

Justification

4. How can I avoid unnecessary examinations?

By making sure that radiographs are selected for each individual patient based on clinical need. You should avoid using a “routine” protocol for X rays of patients and always examine the patient before choosing any X ray procedures. Just as you prescribe drug therapy, such as antibiotics or painkillers, to suit a patient’s diagnosis, so you should try to select any X ray examinations according to their clinical need.

Page Top

5. What advice is there to help me select X ray examinations?

Guidelines have been developed by various professional organizations [EC-RP136; Haute Autorité de Santé; SEDENTEXCT Provisional Guidelines; Espelid et al., 2003; Harris et al., 2002; Isaacson et al., 2008; Pendlebury et al., 2004] that can support you and the patient in this decision, called referral criteria (or selection criteria). These are systematically developed statements of “good practice” for radiology in specific clinical dental situations. They are not rules, but give you a framework against which the needs of your patient can be considered.

Page Top

6. Is it a good idea to monitor the dental development of children using a panoramic radiograph?

No, there is no justification for this routine practice. Radiography may be required when a clinical examination suggests the presence of an abnormality, or when interceptive and active orthodontic treatment is being considered. Clinical indicators, used to identify patients who might benefit from a panoramic radiograph, are effective in excluding children for whom an X ray examination is not likely to be of value.

Page Top

Optimization and radiographic quality

7. Should the manufacturer of the X ray set provide me with anything to help with routine QA checks of X ray equipment?

Yes. Professional societies, in collaboration with national authorities often recommend that users make regular image quality performance checks on X ray equipment (and viewing screens where relevant). This is particularly important for dental cone-beam CT systems and panoramic X ray equipment. To enable users to do this, manufacturers should provide details of the test procedures and the expected results in the equipment’s instruction manual. Any test objects or phantoms that are necessary for these tests and specific to individual equipment models or manufacturers should be provided with the equipment as standard.

Page Top

8. What are the most important features of dental X ray examinations that contribute to dose reduction?

Professional societies, in collaboration with national authorities should publish guidance for users of dental X ray equipment on how to optimize the radiation exposure of patients during justified X ray examinations. For each imaging modality, there are many actions that can be taken to achieve a significant reduction in dose. These are listed below for intra oral; panoramic and cephalometric, dental CBCT. In addition, ensuring high quality clinical images a significant means of protecting patients by maximizing the benefits of the X ray examination [see Question10, 11, 12 and 13].

For intra oral equipment:

  • Rectangular collimation which approximates the size and shape of the receptor reduces dose significantly in comparison to circular collimation; a dose reduction exceeding 60 % can be achieved in dental radiology by using rectangular collimation.
  • The fastest available film consistent with achieving satisfactory diagnostic results should be used. E-speed and F-speed films reduce dose by more than 50% compared with D-speed films.
  • Digital detectors have the potential for further dose reduction, even compared with F-speed film, provided the repeat rate and use of higher exposure factors than necessary are controlled.
  • Using tube voltage in the range 60 to 70 kV.
  • The X ray tube filtration should be sufficient to reduce entrance skin dose to the patient consistent with producing satisfactory image quality.
  • A position indication device which ensures a minimum focus-to-skin distance of 20 cm should be attached to the tube head (eg. by use of a long collimator/cone as opposed to a short conical one).
  • Exposure settings used should be the minimum consistent with the speed of the imaging system used. Advice on exposure settings should be provided in the manual for the X ray equipment, which should be available in the user’s native language and written in easily understood terminology.
  • Where old X ray equipment is used, it may be possible to take immediate action to achieve a significant reduction in patient dose: [see Question 15].

For panoramic and cephalometric equipment:

  • Only the fastest screen-film combinations (at least 400) that are compatible with imaging requirements should be used for panoramic and cephalometric imaging.Note that the intensifying screen and film must be spectrally matched, for example, if the screen emits light in the green region of the spectrum, the film used should be one that is sensitive to green light. Furthermore, the physical condition of screens deteriorates over time and it is important that their condition is monitored and that badly damaged screens are replaced.
  • The X ray beam for cephalometric imaging should be collimated to the area of clinical interest.
  • The inclusion of wedge filters in cephalometric equipment reduces exposure to the soft-tissue facial profile and allows optimal imaging, while the provision of asymmetric collimation allows the exposed area to be confined to the area of clinical interest.
  • Modern panoramic systems also allow the field to be limited to the area of clinical interest, thereby offering a significant potential for dose reduction. If available, limitation of field size to the area required for diagnosis should be used for panoramic radiography.
  • Where available, paediatric examination modes should always be used for examinations of children. If not available, the exposure factors (such as kV, mA, exposure time) should be suitably adjusted. This may result in a dose saving to the patient of 50% or more [Lecomber et al..1993].

For dental CBCT equipment:

  • Volume of patient imaged. The smallest volume compatible with the clinical situation should be used where this provides lower radiation dose to patients.
  • kiloVoltage and mAs. These should be optimized for each clinical application and patient
  • Choice of voxel size. Some CBCT systems offer a choice of “resolution”. The voxel size compatible with the clinical situation should be used where this provides lower radiation dose to the patient.
  • Number of projections and reconstruction algorithm. Some CBCT systems allow the operator to opt for imaging based on a reduced number of basis projections. Such options should be used where the resulting image quality is acceptable for the clinical situation.

When considering buying a CBCT unit, you should check to see whether it is able to comply with national reference doses for dental CBCT where available .

Page Top

9. How does a digital image receptor affect patient dose in dental radiology?

 

  • Two types of digital system are used in intraoral, panoramic and cephalometric imaging. One involves imaging sensors based on charge-couple devices (CCD) and another uses photo-stimulable storage phosphor (PSP) plates (Figure 6).
  • Radiographic technique for digital imaging should be adjusted for the minimum patient doses required to provide the required image quality for each examination type.
  • Intraoral digital radiography offers a potential for significant dose reduction; some studies report that, depending on the diagnostic task, a lower exposure may be used when density and contrast is adjusted using the software features [EC-RP 136]. This is one of the benefits of digital radiography where image quality can be optimized after the image has been taken.
  • Although digital radiography offers possibility of significant dose reduction, it can, in practice, lead to increased patient dose. This can arise from, for example: using an image quality higher than is necessary; use of unduly long exposure times; retakes by staff (e.g. due to bad positioning) that may go undetected; and lack of concern for collimation. Furthermore, due to smaller sensor size, more than one exposure may be required to cover the anatomical area imaged using a single conventional film.

Figure 6: a PSP in its plastic cover

Optimization-radiographic quality

If a patient is exposed to X rays for the purpose of producing a radiograph, but the resulting image is not of adequate quality for clinical use, then the patient has been put at risk for no benefit. Ensuring adequate quality is, therefore, a fundamental part of radiation protection. Figures 1 and 2 show excellent quality intraoral and panoramic radiographs.

Page Top

10. How do I know if my radiograph is of a good standard?

You need to compare your performance by reviewing your radiographic quality against a recognized standard. Such quality standards for clinical images, and guidance on the audit process, are available [EC-RP 136]. As a minimum target, your aim should be to ensure that no greater than 10% of radiographs are of unacceptable quality. If you fail this test, then actions can be taken to reduce the proportion of unacceptable radiographs, with a target of a 50% reduction at each successive audit cycle.

Page Top

11. How can I ensure that I get high quality intraoral radiographs?

Choosing the correct exposure factors, ensuring accurate patient and X ray source position (using film holders), along with careful processing should together contribute to achieving excellent results in radiography.

Figure 7a:underexposed intra-oral film

Figure 7b: overexposed intra-oral film

 Figure 7c: blurred image

 Figure 7d: partial image

For intraoral radiography a simple test tool – an image of a step wedge is useful for maintaining high image quality (Fig.8) . During installation, a reference standard radiograph of the step wedge should be made using the optimized exposure setting for an adult/child. Subsequent radiographs of the step wedge/phantom should be made during clinical use and compared with the reference one to ensure that image quality is maintained [EC-RP 136]

Figure 8: sensitometric steps

Page Top

12. How can I ensure that I get high quality panoramic radiographs?

By achieving accurate patient positioning and by good processing of the film. These are the two commonest causes of poor panoramic radiographic quality. Accurate positioning is helped by using all the positioning aids correctly and by adequate training. Test tools for panoramic radiography are available [see Question 5 and Question 6].

Page Top

13. How can I ensure that I get high quality cephalometric radiographs?

By using a cephalostat and a fixed X ray source/patient/image receptor relationship. This is achieved using a dedicated cephalometric attachment to panoramic X ray equipment. In cases where there is no alternative to using a dental X ray set as the source, it is very important to to ensure correct collimation of the beam and alignment with the cephalostat.

Page Top

14. Can I expect an increased number of rejected films when switching from film to a digital imaging receptor for intraoral radiography?

Yes, this may happen initially. When switching to a digital image receptor, the retake rate can increase, mainly due to wrong positioning of the X ray tube and small image receptor with respect to region of interest (ROI). Furthermore, repeating the exposure is much easier when using digital receptors and this has been reported to lead to increased reject rates. Careful positioning using sensor-holders with a beam-aiming device and audit of clinical image quality [see Question 8] will avoid and or reduce retakes.

Page Top

15. I suspect that my intra oral X ray equipment delivers very high patient doses. Can I do anything to immediately reduce doses while still obtaining good quality images?

Yes. Older models are more likely to operate below 60 kV, either by design or due to deterioration of the X ray tube head over its working life. Older models are also more likely to have low values of total filtration. Both low operating potential (kV) and low filtration are strongly associated with high patient doses, as is the use of speed group D film [see Question 11], which is often observed to be used with older X ray equipment. Therefore, an immediate saving in dose can be achieved by taking the following steps, pending the future replacement of the X ray equipment:

  • Move to the use of E-speed film.
  • To improve the effective X ray beam quality and provide a lower radiation output rate consistent with the use of E-speed film, a further 1.0 mm of aluminium beam filtration should be added to the X ray tube head, as close as possible to the X ray beam window in the tube head. This may require the help of a technician.
  • Continue to use the exposure settings you were using before, unless image quality is severely affected. In this case, the help of a medical physics expert should be sought. The above steps should provide a reduction in dose of at least 70%.
  • Poor film processing conditions may have as great an impact on patient doses as the X ray equipment, and so attention should also be paid to ensuring that all aspects of processing are carried out in accordance with the advice provided in [EC-RP 136] and that proper quality assurance methods are in place.

Page Top

References


Social Media

 
Copyright © 2013 International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria